¿Cuántos amigos podemos tener?
Anxo Sánchez
¿Cuántos amigos podemos tener?
Anxo Sánchez
Físico
Creando oportunidades
Cómo las matemáticas nos ayudan a entender la sociedad
Anxo Sánchez Físico
Anxo Sánchez
La pizarra de su despacho muestra un inmenso diagrama en el que destacan, en grande, cuatro conceptos: estructuras sociales, comportamiento, cambio climático y normas sociales. Sin embargo, Anxo Sánchez es físico. “Un físico traidor”, se autodefine. Aplica sus conocimientos de física y matemáticas a las ciencias sociales y al estudio del comportamiento humano.
Doctorado en Física Teórica por la Universidad Complutense de Madrid, realizó su investigación postdoctoral en el Laboratorio Nacional de Los Álamos, en Estados Unidos. Actualmente, es catedrático de Matemática Aplicada en la Universidad Carlos III de Madrid y fundador del Grupo Interdisciplinar de Sistemas Complejos. “Como físico me entrenaron a pegarme con los problemas y con la aproximación de simplificarlos”, argumenta.
Los sistemas complejos sociales son el eje de sus investigaciones. “Son sistemas en los que interaccionan muchas personas”, explica Sánchez. Ha simplificado fenómenos como la amistad, para corroborar que - como adelantaba el antropólogo Dunbar - podemos tener 150 amigos como máximo. “Por primera vez una teoría matemática es capaz de predecir un fenómeno social”, declara emocionado el físico. El catedrático defiende las aplicaciones sociales de su trabajo. "La información sobre las amistades de los estudiantes de tu clase, te puede ayudar a mejorar tanto su aprendizaje como la calidad de sus relaciones o a detectar problemas de manera temprana”, argumenta.
Sánchez ha publicado más de 170 artículos en revistas científicas de prestigio internacional. Sus contribuciones han permitido avances en campos tan diversos como la economía, la ecología, el derecho o la informática teórica. En aquel croquis en la pared de su oficina también se pueden leer, entre muchas otras, las palabras: escuelas, parkings, clubs o chismes. Es un esquema de todos los proyectos en los que está inmerso y que revelan su empeño por desdibujar las líneas divisorias entre disciplinas.
Transcripción
Cada uno tenéis vuestro sitio, tenéis vuestra silla y podríais estar solos y no notaríais la diferencia. Sin embargo, si ahora yo grito: «¡Fuego!», y vais corriendo todos a la puerta es cuando vais a interaccionar. ¿Cómo interaccionáis ahí? Pues porque no caben dos personas en el mismo sitio. Esto un físico lo llamaría interacción de volumen excluido. Nosotros decimos que donde hay uno no se puede poner otro. Entonces, ¿a qué lleva eso? A que se formen fenómenos colectivos. En este caso hablaríamos de que en la puerta, cuando intentarais salir corriendo, se formaría un atasco. Estaríais todos chocando, intentando salir y eso sí es una interacción. Esa es una interacción muy física, además, es una interacción en la que os comportáis como partículas y, de hecho, hay grupos muy buenos en España, en concreto en la Universidad Navarra, que trabajan en esto y muestran que los atascos se pueden entender igual que los que se producen en un silo de granos cuando se abre la puerta y se atascan los granos. La interacción que a mí me gusta del sistema complejo social no es esa, es más lo que llamamos interacciones estratégicas, en las cuales tenéis que tomar decisiones. Pero tenéis que tomar decisiones sabiendo que el otro o la otra también va a tomar sus decisiones. Lo mismo ocurre con los atascos, por ejemplo, los coches tampoco caben dos en el mismo sitio y muchos atascos no ocurren porque haya un corte en la carretera, sino porque una persona frena, el de atrás frena, y así se van transmitiendo los frenazos y se forma el atasco.
Entonces, al final, en un sistema complejo la interacción entre cada par o cada grupito de personas da lugar a una cosa colectiva. Pensad que la física en realidad lo que estudia es la naturaleza, y la sociedad es naturaleza, está formada por cosas naturales que somos nosotros. Entonces, igual que puedo entender el agua sabiendo cómo interaccionan sus moléculas, pues mi esperanza es que podamos entender la sociedad entendiendo como interaccionamos unos con otros, y el problema es que interaccionamos de maneras bastante más complicadas que las moléculas del agua. Entonces, por eso tenemos que hacer muchos experimentos. Tenemos que hacer muchas simulaciones de ordenador para intentar ir identificando comportamientos, identificando interacciones y poder, al final, hacer una teoría física. El sueño de todo físico es acabar teniendo una teoría de las cosas, igual que hay una teoría del universo o una teoría de partículas, pues tener una teoría de la sociedad. ¿Qué ocurre? Que muchos físicos piensan eso, que los físicos tendríamos que hacer cosas de físicos, que si los electrones, que si las partículas, que si los fluidos. Y a mí lo que me gusta es salirme del tiesto. Entonces creo que por eso al final puedo aportar algo, porque cuando me meto en otro campo, y ya con esto acabo de presentarme, lo que sí quiero dejar claro es que no aspiro a ser un especialista de ese campo. Yo no quiero ser uno de ellos. Yo lo que quiero es aportarles puntos de vista distintos, porque ellos ya saben hacer su trabajo. Entonces, de lo que vengo un poco a hablaros hoy es de cómo aportar puntos de vista distintos a otras disciplinas. Así que esto es un poco el principio y a partir de aquí podemos hablar todo lo que queráis.
"No podemos tener infinitas amistades, como máximo 150"
Ya no te digo todos los que estamos enganchados con el teléfono móvil. El teléfono móvil tiene matemáticas dentro… en todos los sitios, desde el GPS que sabe dónde estás hasta la codificación de tu voz para que vaya por la línea telefónica. En definitiva, te lo vas a encontrar en todas partes. Hay más maneras en que las matemáticas entran en juego en cosas sociales. Por ejemplo, se puede sacar un montón de información de las redes sociales. Hay grupos, en concreto en mi universidad, en la Universidad Carlos III de Madrid, hay grupos que han visto que, por ejemplo, se pueden contrastar las cifras del paro analizando los tweets de las personas. Se les aplican unos algoritmos y luego simplemente en función de lo que dicen y de cómo lo dicen se puede sacar desde, pues eso, los datos de paro hasta incluso datos de alfabetización de los distintos sitios. También es verdad que esto se puede usar para bien y para mal, porque también se ha visto que con las redes sociales, las matemáticas te dejan extraer datos de personas que incluso no están en la red social. Simplemente porque otras personas dicen cosas de ellos o cuelgan fotos suyas, entonces las matemáticas en ese sentido son muy potentes. Y también lo son a través de otros algoritmos de inteligencia artificial para intentar predecir lo que vas a hacer. Eso puede ser bueno. Lo usan los bancos para intentar saber si te están robando, por ejemplo, con tu tarjeta de crédito, si alguien te ha robado tu tarjeta y la usa de una manera rara, su algoritmo les levanta la bandera roja y les dice: «Aquí pasa algo». Entonces, en el aspecto social, las matemáticas, que parece que no tienen nada que decirnos, están literalmente en casi cada paso que das.
El envidioso, su único objetivo es que el otro no gane más que él. Entonces, en situaciones donde tomar una decisión sería muy beneficioso para este envidioso, dice: «No, pero resulta que el otro se va a beneficiar todavía más. Pues no, entonces decido lo contrario». Como comprenderéis esto es un poco… le llamamos envidioso porque es así, pero es estúpido. Después están el optimista y el pesimista. Al optimista le llamamos así, pero lo que tiendo a pensar es que se cree más listo que el otro. Entonces, dice: «Vale, voy a ver el juego y voy a suponer que el otro siempre va a hacer lo que a mí me conviene». Bueno, sí o no, pero eso es lo que piensa el optimista. Entonces, por ejemplo, uno de los juegos que les poníamos era con dinero, pero en el fondo es la misma idea. Tenéis que ir a cazar y si vais juntos podéis cazar un ciervo y si vais por separado podéis cazar conejos cada uno. Eso sí, quien vaya al ciervo y se quede sin ayuda no caza ni ciervo ni conejo. Entonces, ahí lo que interesa no está claro, porque depende de lo que decida el otro. Si el otro es un tipo o una tipa de la que te puedes fiar y va a ir al ciervo, pues interesa, porque al final el ciervo es mejor que el conejo. Pero si lo que quieres es cubrirte las espaldas dices: «Bueno, no me fío, me voy a los conejos y al otro que le vaya como le vaya». Entonces, ¿qué hace el optimista? El optimista supone que el otro va a hacer lo que le interesa, que es ir a coger ciervos. Entonces él va a coger ciervos ciegamente. No se plantea que el otro pueda hacer lo contrario. El pesimista, sin embargo, haría otra cosa. El pesimista supondría que el otro va a ir a fastidiarle. Va a ir contra él. Otra opción que tampoco es muy racional. Entonces, ¿qué hace? «Ah, como este va a ir contra mí no va a ir al ciervo. Entonces me tengo que asegurar estar lo menos mal posible, ¿y cómo estoy lo menos mal posible? Yéndome a por conejos». Entonces, el pesimista ahí decide ir a por conejos. Las dos ideas son absurdas. El optimista piensa que el otro va a hacer lo que él quiere y el pesimista piensa que el otro va a ir a por él. Y luego está el más absurdo de todos, que es el majete, que siempre hace lo que es bueno. Siempre elige la opción que va a favorecer al otro o que va… Y es así. Y es curioso, porque luego hacemos muchos otros experimentos y siempre hay un porcentaje, que puede ser el veinte o treinta por ciento de gente, varía de unos a otros, que son así, que cooperan sin esperar nada a cambio, que ayudan al otro o que son buenas personas, pero siempre están ahí. Entonces, con esos cuatro grandes tipos es como, más o menos, empezamos a entender esto. Si la gente sigue dos o tres reglas de comportamiento, entonces puedo aspirar a tener una teoría y por eso es tan importante este resultado.
"No entendemos que nuestra privacidad no es solo nuestra y tenemos mucho que educar aquí"
Pero luego fue más allá. Entonces, estudiando en detalle el problema, encontró que esas amistades, esas ciento cincuenta personas, las vamos a organizar en capas. Entonces, tenemos una primera capa de relaciones superíntimas que está formada por familia muy cercana, pareja, amigos muy íntimos y que son muy poquitos. Son tres, cuatro o cinco personas. Esta es la primera capa, luego a esa capa le añadimos otros diez o así que son muy buenos amigos, que los ves todo el rato, que te los encuentras en el bar todas las semanas, que les llamas, que estás pendiente de ellos y ellos de ti. Y ahí ya tenemos la segunda capa, que son los cinco de antes y los diez de ahora, pues como quince. A esta capa le agregamos una siguiente, unos treinta, treinta y cinco o cuarenta, que con los anteriores ya son cincuenta más o menos, y que son amigos, bastante buenos amigos, pero ya no de todos los días, sino que a lo mejor los vemos una vez al mes, estamos un poco pendientes de su vida, pero tampoco estamos a la última, pero tenemos bastante trato. Y luego hasta el ciento cincuenta es el resto. El último círculo que engloba ya a todos los ciento cincuenta, podríamos llamarles conocidos, gente que sí, que sabes un poco de ellos, que les llamas de cuando en cuando, pero super de cuando en cuando, que a lo mejor les mandas una postal en Navidad, pero que no tienes tampoco un trato tan, tan inmediato. Entonces, este es otro hecho empírico que hay que explicar. Tenemos un número máximo de amistades y, además, esas amistades están organizadas en capas de distinta intensidad de relación. Por eso decía antes, aquí las matemáticas van a jugar un papel, porque igual que los físicos se han dedicado a explicar regularidades, pues los planetas se mueven de una cierta manera, se observó cómo se movían y luego había que explicar cómo y de ahí a la ley de la gravitación universal de Newton, y luego a la de Einstein. Pero bueno, da lo mismo. Esto es lo mismo. Tenemos un hecho experimental, ciento cincuenta amigos organizados en capas. Bueno, pues las matemáticas lo pueden explicar. Y esto es algo que hicimos. De hecho es el resultado que publicamos el año pasado. Hicimos una teoría matemática de la cual tampoco tiene ningún sentido que entre en los detalles, pero lo que me importa es que solo usa dos cosas, que son: uno, tenemos una capacidad cognitiva limitada. En esto estaréis de acuerdo conmigo. No podemos acordarnos del nombre de todas las personas del planeta. Es totalmente imposible. Entonces tenemos una capacidad cognitiva limitada. Ahí incluimos también el tiempo, porque aunque quisiéramos y pudiéramos tener muchísima capacidad cognitiva, tampoco tenemos tiempo para ser amigos de todo el mundo del planeta. Una persona a la que no tienes tiempo para ver, no puedes ser amiga de ella. Entonces, capacidad cognitiva y recursos limitados. Primera hipótesis. Segunda hipótesis. Distintos tipos de amistad exigen distinto esfuerzo, gasto de recursos cognitivos.
Yo con mi pareja, pues más me vale saber si le gusta el bacalao o no, si le gusta Woody Allen o no, qué día es su cumpleaños, qué día empezamos a salir… tenemos que saber un montón de cosas. De otra gente no me preocupa tanto. Entonces, vamos a gastar más recursos en nuestro círculo más íntimo, un poco menos en el círculo siguiente, y así sucesivamente, ¿de acuerdo? Con una teoría matemática basada en un principio físico que se llama principio de máxima entropía, que no voy a explicar, pudimos predecir que exactamente vamos a organizar nuestras amistades de esa manera. Y, de hecho, pudimos predecir, si os dais cuenta antes os estuve diciendo números de las capas: cinco, quince, sobre cincuenta, sobre ciento cincuenta, hay como un factor tres ahí, ¿verdad? Bueno, pues ese factor tres también sale de nuestra teoría. Sale de suponer simplemente que el esfuerzo que tienes que hacer para mantener una amistad es proporcional a la intensidad de esa amistad y eso te da ese número. Entonces, este resultado, a mí, al menos, me parece impresionante porque tengo una teoría que es puramente matemática que también sirve para explicar cómo podría distribuir bolas en cajas de distintos colores, y que explica cómo organizamos nuestras amistades. Fuimos más allá, resulta que nuestra teoría predice algo que no se ha visto. Y ese algo que no se ha visto es, fijaos, si estáis en la isla de la serie aquella de ‘Perdidos’ o estáis en un sitio que tenéis muy poca gente, lo que nuestra teoría predice es que en ese caso, a lo mejor solo hay veinte personas ahí, pues esos veinte van a ser todos del círculo íntimo. Si tenemos poca gente para relacionarnos, vamos a saber muchísimo de ellos, van a estar todos en el círculo íntimo y eso es una predicción. Esta estructura, Dunbar no la había propuesto, nadie la había propuesto, ¿entonces qué hicimos? Cogimos y pedimos datos de inmigrantes, pero inmigrantes que tenían una peculiaridad. Por ejemplo, un grupo interesante que nos lo proporcionó el profesor José Luis Molina de la Universitat Autònoma de Barcelona, eran búlgaros que viven en Roses, en un pueblo de Girona. Y estos búlgaros son una comunidad bastante cerrada, sobre todo por problemas de idioma, además creo que vienen casi todos de dos o tres pueblos de Bulgaria. Y ellos tenían datos de cómo organizaban sus amistades. Este es un grupo que se dedica a estudiar precisamente cómo organizamos las amistades empíricamente. Bueno, pues cuando cogimos sus datos, clavados, los veintitantos búlgaros que hay en Roses son todos supercolegas. Y siempre es lo mismo. Pero es que incluso leí luego un blog de alguien que se hacía eco de nuestro trabajo, que contaba: «Pues la verdad es que esto debe ser verdad porque yo viví un tiempo en un pueblecito en Alaska y éramos quince, y éramos todos superamigos». Y dices: «Hombre, pues entonces parece que hemos predicho algo y se ve, y hemos predicho con matemáticas un fenómeno social». La ciencia nos puede decir muchas cosas de las amistades y, de hecho, ahora el siguiente paso que estamos dando en mi grupo es el que yo creo que es un poco el lógico. Entonces ahora nosotros tenemos el concepto de, le llamamos, átomo social. En un átomo tenéis el núcleo, hay electrones en capas, por lo que pensamos que una persona tiene unos huecos que rellenar y los rellena con amigos de distinta intensidad.
Igual que hay electrones en el átomo que tienen distinta energía. Lo que queremos saber ahora es cómo evolucionan. Entonces, vosotros ahora mismo, por ejemplo, Jordi, tú estás en mi capa de conocidos porque acabamos de conocernos, sé tu nombre, tú sabes el mío. Te puedo considerar que estás en mi capa de conocidos, pero por desgracia, sobre todo para mí, para ti será un alivio, pues dentro de dos días ni te acordarás. Entonces, ¿cómo entra y sale la gente en los distintos círculos? Eso es algo que no se sabe. No se tiene ni idea. Ni idea. Y, además, hay casos traumáticos en los cuales hay que reemplazar gente: se muere tu pareja, tu mejor amigo se va a vivir a Australia. ¿Cómo se produce el reemplazo? ¿Viene otro de otra capa cercana? ¿Viene uno de fuera? ¿Cuánto tiempo vivimos en las capas? Porque no siempre tenemos los mismos mejores amigos. Vamos, si miro a mi hija en el instituto le duran diez minutos. Entonces, esto es algo en lo que estamos empezando a rascar la superficie. Tenemos datos de colegios con los que trabajamos y hemos visto que en un año y algo hay una evolución. Les preguntamos tres veces por sus amistades. Y acaban de entrar en el instituto, no se conocen muchos de ellos, pero al llevar un año y medio ya empiezan a tener su estructura de círculos de Dunbar. Entonces, esto es lo que más nos preocupa ahora, porque además es lo que nos va a dar información sobre cosas que se pueden hacer en la sociedad, o cómo nos comportamos con nuestros amigos, cómo los elegimos. O sea que realmente hemos dicho mucho, pero tenemos que decir muchísimo más.
Hola, me llamo Aarón, soy estudiante de Matemáticas. ¿Esto que nos comentas de las organizaciones de las amistades depende de si son amistades de la vida real o amistades «online»? ¿Y cuál es el papel de las redes sociales en tus conclusiones?
Entonces, vengo yo como investigador, te digo: «Déjame tus datos», «No, tengo miedo a la privacidad». Realmente tenemos un problema de educar a la gente aquí. Tenemos un problema muy serio, porque no entendemos lo que es privacidad. No entendemos que nuestra privacidad no es solo nuestra, sino la de nuestros amigos. Y nos dejamos robar por unos y cuando se quiere hacer algo para aprender decimos: «Ah, no, mi privacidad me preocupa mucho», pues tira el teléfono. Entonces tenemos mucho sobre lo que educar aquí. El primer paso es lo que decía antes, a través de la educación convencernos de que los datos son nuestros, afectan a nuestras personas queridas y que tenemos que ser cuidadosos con ellos y tenemos que hacer un pequeño esfuerzo por enterarnos de lo que pasa en este mundo.
"La estructura de las redes sociales reales, de amigos, influyen en el rendimiento académico de los jóvenes"
¿A dónde quiero ir con esto? Claro que podemos mejorar la convivencia. Yo creo que cuando le cuento esto a la gente normalmente se da cuenta de que somos muy burros, de que nos vendemos motos nosotros solos. ¿Qué identidad tengo yo de ciervo o de conejo? Yo lo que quiero es ganar dinero. A mí me han dicho que me va mejor coger ciervo, pero si cogiendo conejo con todos me va a ir mejor, ¿por qué no lo hago? Entonces, esto lo que pone de manifiesto son los puntos en los que hay que incidir cuando se educa a la gente, y que uno tiene que mirar, por supuesto, su propio bien, pero el propio bien de uno, y aquí vuelve el sistema complejo, depende de las decisiones de uno y de las decisiones de todos los demás. Entonces, tengo que intentar tener presente que están los otros ahí fuera, que van a condicionar cómo me va a ir. Y sobre todo, no entender mal las situaciones, porque me hayan puesto una chaqueta verde o una azul no soy diferente de los otros. Entonces nos va a ayudar a mejorar la convivencia, en tanto en cuanto entendamos que formamos parte de un colectivo, que nuestras decisiones afectan al colectivo y el colectivo nos afecta a nosotros. Y entonces sí que puede haber una esperanza de evitar situaciones absurdas como estas. Además de esta faceta que te decía, hay otra en la que también investigamos recientemente, esta es más reciente, que es las normas sociales. Y aquí os preguntaréis: «¿Las normas sociales…?». Las normas sociales se pueden medir, lo creáis o no las normas sociales se pueden medir. Yo lo que no se puede medir no lo estudio. Yo soy físico, yo tengo que medir cosas para hacer una teoría que las explique. Entonces, nosotros abordamos este problema desde el punto de vista de una economista muy buena, Cristina Bicchieri, que está en Pensilvania, en Estados Unidos, que dio una definición de norma que seguro que vais a estar de acuerdo conmigo. Una norma ocurre en un grupo, como podría ser este, cuando hay bastante gente que comparte dos cosas. Una, todos tienen la misma idea de lo que los demás esperan de ellos. Que es lo que se llama expectativas normativas. Me da igual. Sabemos lo que los demás esperan de nosotros. Y la otra son las expectativas empíricas, sabemos lo que van a hacer los otros. Entonces, os pongo un ejemplo. Volviendo al caso de la cooperación. Yo espero que cuando cruzo por un paso de cebra no me atropellen. La mayoría de nosotros, si no todos, esperamos eso. Eso son expectativas empíricas y normalmente ocurre, no te atropellan. Las expectativas normativas es que yo espero que si yo me salto el paso de cebra, me pongan una multa. Me castiguen, la sociedad me castigue. Entonces, si yo no cumplo con las expectativas de los demás me va a caer una multa, me va a caer un castigo. ¿A dónde va todo este rollo? Pues a que podemos medir normas sociales y aquí viene lo interesante, actuar sobre ellas. Y vuelvo al ejemplo de esta economista de Pensilvania, de Cristina Bicchieri, ha trabajado con la ONU para luchar contra la mutilación genital femenina en el Sahel. ¿Y cómo lo han hecho? Pues primero han hecho encuestas a la gente, sobre todo a las madres, para saber qué esperaban que pensaran los otros de ellas y qué esperaban que les pasara si no mutilaban a sus hijas.
Y lo que se vio es que realmente el problema no es que esperaran un castigo ni nada, sino que creían que era lo que tenía que hacer todo el mundo, que todo el mundo lo iba a hacer. En cuanto se les informó de que no era así, que la gente en realidad no quería hacerlo, no recuerdo si fue en Chad, en Alto Volta o en Níger, pero era uno de estos países, pues decayó la mutilación genital femenina una barbaridad. Y es un problema de que creemos que algo es una norma, cuando en realidad no lo es. No tenemos esa información. Entonces lo que nos está diciendo esta aproximación al problema de las normas sociales es: averigua qué espera la gente que ocurra y si espera que ocurra algo indeseable, da la información de que en realidad no es así. Y entonces, ahí realmente puedes estar actuando no solo sobre la convivencia que me preguntabas, sino sobre el propio bienestar de la gente. En un problema tan grande como ese me parece que cualquier contribución es esencial.
"La ciencia es una obra colectiva, la hemos hecho entre todos y es de todos"